Brain Effects of Vaping and Nicotine Use

August 24th, 2020

Kristen M Schroeder, MD
Disclosure

I have no conflicts to disclose.
Vaping

- Nicotine
- Cannabis (THC or CBD)
- Flavors
- Additional substances:
 - Delivery solvents
 - Flavors
 - Carbonyl Compounds
 - Alkaloids (tobacco related)
 - Nitrosamines (Tobacco specific)
 - Reactive oxygen species
 - Metals
 - Other Toxins not defined
Normal Adolescent Brain Development
Nicotine

- Known neuroteratogen
 - Alters cell proliferation and differentiation
 - Cell damage
 - Interferes with synapse maturation and intercellular communication

- Damage occurs despite frequency or concentration of use

- Animal Studies:
 - Cell loss
 - Decreased DNA concentration
 - Decreased Neuron projections

- Forebrain and Midbrain
 - Nicotinic acetylcholine
 - Serotonergic
 - Dopaminergic
 - Glutamatergic
Nicotine

- Upregulation of nicotinic acetylcholine receptors (nAChRs)
- Increased dopamine in Mesocortical limbic regions
- Glutamate system – increased fast excitatory synaptic transmission
- Decreased serotonin and dopamine in the prefrontal cortex
- Expression of arc mRNA and plasticity genes
 - Arc – gene important for synaptic plasticity (thus learning and memory) – expressed higher in specific cortical regions of adolescents
 - c-fos
- Cellular plasticity
Subsequent Effects of Nicotine

- Learning
- Memory
- Behavioral changes
- Addiction

- Psychiatric Concerns
 - Anxiety
 - Depression

https://medium.com/parkinsons-uk/protecting-brain-cells-the-story-of-nicotine-b3b51f5b8259
• Levels of THC in cannabis have increased in potency – 4% in 1995 to 12% in 2014
• In utero:
 • Impaired central nervous system development → cognitive and behavioral deficits
 • Prefrontal cortex
• Adolescence:
 • Decreased volumes
 • Whole brain, gray matter, and hippocampus
 • Prefrontal cortex – increased and decreased volumes
 • Decreased prefrontal and insular cortical thickness
 • Larger amygdala volumes (in females)

http://420intel.ca/articles/2020/03/10/barriers-studying-marijuana-qa-dr-thorsten-rudroff
Endocannabinoids
 • Can inhibit GABA-ergic and glutamatergic synapses – role in balancing neuronal activity
 • CB1 receptor - expressed in a high density in cerebral cortex, hippocampus, basal ganglia and cerebellum
 • Exogenous cannabinoids disrupt adolescent neuronal development
 • Disrupted glutamate release
 • Interferes with neurotransmitter release
 • Decreased cannabinoid receptors
Subsequent Effects of Cannabis Use

- Impaired Memory
- Impaired Cognitive Functioning
 - IQ Loss – Average 8 pts
 - Memory, Learning
- Impaired Executive functioning
 - Impulsivity
 - Externalizing Behaviors
- Psychiatric Concerns
 - Psychosis – hallucinations
 - Paranoia
 - Schizophrenia
 - Anxiety
 - Depression
 - Suicidal Ideation
Oxidative Stress

- Free Radicals, Reactive oxygen or nitrogen species
 - Flavors
 - Heavy Metals
 - Nicotine
 - Aerosols
 - Cannabis
Oxidative Stress

- Damage to cells
- Disrupted antioxidant/scavenger system
- Disrupted DNA repair system
- Contributes to addiction, inflammation, and more oxidative stress
- Developing brain is particularly vulnerable
 - Cerebral cortex, Prefrontal cortex
 - Hippocampus

Summary of Brain Effects of Oxidative Stress

- Disrupted Brain Development: Cerebral Cortex- Prefrontal Cortex and Hippocampus
- Decreased MAO-A gene expression – correlated with aggression and impulsivity
- Decreased dopamine expression
- Suppressed serotonin expression
- Oxidative stress as part of the molecular mechanisms for development of depression, sleep disruption and aggressive/impulsive behaviors
Subsequent Effects of Oxidative Stress

- Social maladjustments
 - Sleep disruption
 - Attention changes
 - Aggression
 - Impulsivity
 - Cognitive and memory impairment

- Psychiatric concerns
 - Depression
 - Suicidal Ideation
Resources

